On a Chen-Liu approach to the perturbed KdV equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 19 L771
(http://iopscience.iop.org/0305-4470/19/13/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:18

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On a Chen-Liu approach to the perturbed KdV equation

K Roy Chowdhury and A Roy Chowdhury
High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta700032 , India

Received 21 January 1986

Abstract

We have shown that it is possible to deduce a Lax pair for the perturbed KdV equation by using the technique of Chen and Liu.

Recently there have been various attempts to extend the inverse scattering approach to a different class of non-linear problems (Bullough and Caudrey 1980). In this context the question of partial or complete integrability of some perturbed equations are of utmost importance, because the idealised equations never occur in actual physical situations. In a recent communication it has been shown by Kodama (1985) that the well known KdV equation, when perturbed by some additional terms of a particular nature, may be mapped via Birkoff's technique to an integrable system. Here we show that by following a simplified approach of Chen and Liu (1979) we can deduce a Lax pair for the perturbed KdV system correct up to first order in the perturbation parameter.

Let us consider the perturbed kdv equation written in the form

$$
\begin{equation*}
u_{t}=6 u u_{x}+u_{x x x}+\varepsilon K\left(u, u_{x} \ldots\right) \tag{1}
\end{equation*}
$$

with $K(u)$ given as

$$
\begin{equation*}
K(u)=a_{1} u_{5 x}+a_{2} u u_{3 x}+a_{3} u_{x} u_{2 x}+a_{4} u^{2} u_{x} . \tag{2}
\end{equation*}
$$

To apply the Chen-Liu approach we first of all linearise equation (1) by setting $u \rightarrow u+\eta \psi$ where η is a small parameter other than ε; whence we obtain the following equation for ψ :

$$
\begin{equation*}
\psi_{t}=\psi_{x x x}+6(\partial / \partial x)(u \psi)+\varepsilon Q \psi \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
Q \psi=a_{1} \psi_{5 x}+a_{2}\left(u \psi_{3 x}+\psi u_{3 x}\right)+a_{3}\left(u_{x} \psi_{x}\right)_{x}+a_{4}\left(u^{2} \psi\right)_{x} \tag{4}
\end{equation*}
$$

equating first-order terms in η.
Now consider the adjoint of (4) which is
$\frac{\partial \psi^{\mathrm{a}}}{\partial t}=\left(\frac{\partial^{3}}{\partial x^{3}}+6 u \frac{\partial}{\partial x}\right) \psi^{\mathrm{a}}+\varepsilon\left[(\partial / \partial x)\left(a_{1}-a_{3} u_{x x}+a_{4} u^{2}\right)+a_{2} u \partial^{3} / \partial x^{3}-a_{3} u_{x} \partial^{2} / \partial x^{2}\right] \psi^{\mathrm{a}}$
where ψ^{a} stands for the adjoint wavefunction. It is now customary to consider the right-hand side of (5) to be the temporal part of the Lax pair we are searching for.

Therefore we put

$$
\begin{equation*}
A=A^{0}+\varepsilon A \tag{6}
\end{equation*}
$$

along with

$$
\begin{align*}
& A^{0}=\partial_{x}^{3}+6 u \partial_{x} \\
& A^{1}=(\partial / \partial x)\left(a_{1}-a_{3} u_{x x}+a_{4} u^{2}\right)+a_{2} u \partial / \partial x-a_{3} u_{x} \partial^{2} / \partial x^{2} \tag{7}
\end{align*}
$$

The next part of our analysis considers the derivation of the conserved quantities associated with the perturbed system () for which we set

$$
\begin{equation*}
\psi^{\mathrm{a}}=\exp \left(K x-\omega t+\int_{-\infty}^{x} T \mathrm{~d} x\right) \tag{8}
\end{equation*}
$$

where

$$
T=\sum_{n=0}^{\infty} k^{-n} T_{n}
$$

in equation (5). Equating powers of k^{-n} we arrive at the following recurrence relation for the T_{i} :

$$
\begin{align*}
& T_{n, t}=\left[\left(T_{n-i-j} T_{i} T_{j}+3 T_{n+2}+3 T_{n-i+1} T_{i}\right)\right. \\
&\left.+3 T_{n+1, x}+3 T_{n-i} T_{i x}+T_{n, x x}\right]\left(1+\varepsilon u a_{2}\right) \\
&+\left[6 u+\varepsilon\left(a_{1}-a_{3} u_{x x}+a_{4} u^{2}\right)\right]\left(T_{n-1}+T_{n}\right) \\
&-\left[2 T_{n-1}+T_{n-i} T_{i}+T_{n, x}\right] \varepsilon a_{3} u_{x} . \tag{9}
\end{align*}
$$

Some of the T_{i} can be obtained from (9); we report a few of them:

$$
\begin{align*}
& T_{1}=-2 u+\frac{1}{3} \varepsilon\left(-1+20 u_{x x}+30 u^{2}\right) \\
& T_{2}=-T_{1 x} \\
& T_{3}=-2 u_{x x}+2 u^{2}+\frac{1}{3} \varepsilon\left(18 u_{4 x}+40 u u_{2 x}-40 u^{3}-40 u u_{x}+4 u\right) \\
& T_{4}=2 u_{3 x}+8 u u_{x}+\frac{1}{3} \varepsilon\left(-16 u_{5 x}-140 u u_{3 x}-120 u_{x} u_{2 x}-280 u^{2} u_{x}-80 u u_{x}\right) \\
& T_{5}=-2 u_{4 x}-12 u u_{2 x}-10 u_{x}^{2}-4 u^{3}+\frac{1}{3} \varepsilon\left(14 u_{6 x}+108 u u_{4 x}+388 u_{x} u_{3 x}-\frac{290}{3} u^{4}\right. \\
& \left.\qquad \quad+\frac{298}{3} u_{2 x}^{2}+80 u^{2} u_{2 x}+\frac{388}{3} u u_{x}^{2}+\frac{16}{3} u^{2}+2 u_{x}+\frac{1}{3} u_{2 x}+80 u u_{2 x}\right) . \tag{10}
\end{align*}
$$

From these T_{i} we then construct ψ_{i} defined as

$$
\begin{equation*}
\psi_{n}=\frac{\delta}{\delta q} T_{n}=\sum_{i=\partial}^{\infty}(-1)^{i} \frac{\partial^{i}}{\partial x^{i}} \frac{\partial}{\partial q_{i x}} T_{n} \tag{11}
\end{equation*}
$$

where $q_{i x}$ denotes the i th derivative of q.
The interesting phenomenon that now takes place is that even in the case of the perturbed Kdv equation the even ψ_{i}, i.e. $\psi_{2}, \psi_{4}, \ldots$, etc, all turn out to be zero. Explicitly we obtain

$$
\begin{align*}
& \psi_{1}=-2+\frac{1}{3} \varepsilon(60 u) \\
& \psi_{2}=0 \\
& \psi_{3}=-4 u+\frac{1}{3} \varepsilon\left(160 u_{2 x}+240 u^{2}\right) \tag{12}\\
& \psi_{4}=0 \\
& \psi_{5}=-4\left(3 u^{2}+2 u_{2 x}\right)+\frac{1}{3} \varepsilon\left(160 u_{2 x}+\frac{92}{3} u_{x}^{2}-360 u_{4 x}-\frac{1160}{3} u^{3}+\frac{184}{3} u u_{2 x}+\frac{32}{3} u\right)
\end{align*}
$$

When ε becomes zero these ψ become those of lino and Ichikawa (1982). These forms suggest that we can construct a recursion operator L of the form

$$
\begin{equation*}
L=\partial^{2} / \partial x^{2}+a+\alpha \varepsilon\left(\partial^{2} / \partial x^{2}+b\right) \tag{13}
\end{equation*}
$$

with α being a numerical factor.
Now Lax representation demands that the perturbed kdv equation (1) should be a consequence of the linear pair

$$
\begin{equation*}
\psi_{t}=A \psi \quad \text { and } \quad L \psi=\lambda \psi \tag{14}
\end{equation*}
$$

which is known to yield

$$
\begin{equation*}
L_{\mathrm{t}}=[A, L] . \tag{15}
\end{equation*}
$$

Now we rewrite L and A as

$$
\begin{align*}
A & =A_{0}+\varepsilon A_{1} \\
L & =L_{0}+\varepsilon L_{1} \tag{16}
\end{align*}
$$

where the subscripts ' 0 ' and ' 1 ' refer to the unperturbed or perturbed part of A and L. Further decomposition of A and L is possible in the sense of Iino and Ichikawa, by segregating the parts A_{i} or L_{i} depending on the fields or not. Thus we obtain

$$
\begin{aligned}
A & =A_{0}+\varepsilon A_{1} \\
& =A_{0}^{0}+A_{0}^{1}+\varepsilon\left(A_{1}^{0}+A_{1}^{1}\right)
\end{aligned}
$$

and

$$
\begin{align*}
L & =L_{0}+\varepsilon L_{1} \\
& =L_{0}^{0}+L_{0}^{1}+\varepsilon\left(L_{1}^{0}+L_{1}^{1}\right) \tag{17}
\end{align*}
$$

where the superscripts ' 0 ' and ' 1 ' refer to the zeroth or first order with respect to the dependence on the non-linear field variables.

Now from (15) we obtain

$$
(\partial / \partial t)\left(L_{0}+\varepsilon L_{1}\right)=\left[A_{0}+\varepsilon A_{1}, L_{0}+\varepsilon L_{1}\right]
$$

or

$$
\begin{align*}
& \partial L_{0} / \partial t=\left[A_{0}, L_{0}\right] \tag{18}\\
& \partial L_{1} / \partial t=\left[A_{0}, L_{1}\right]+\left[A_{1}, L_{0}\right]
\end{align*}
$$

for first-order terms in ε. Now again from equation (15) we obtain

$$
(\partial / \partial t)\left(L_{0}^{0}+L_{0}^{1}\right)=\left[A_{0}^{0}+A_{0}^{1}, L_{0}^{0}+L_{0}^{1}\right] .
$$

Separating first- and zeroth-order terms

$$
\begin{align*}
& \partial L_{0}^{0} / \partial t=\left[A_{0}^{0}, L_{0}^{0}\right] \\
& \partial L_{0}^{1} / \partial t=\left[A_{0}^{0}, L_{0}^{1}\right]+\left[A_{0}^{1}, L_{0}^{0}\right] \tag{19}
\end{align*}
$$

which are the equations of Iino and Ichikawa which determine a. If we apply the same procedure to equation (18) we obtain

$$
\begin{equation*}
\partial L_{1}^{1} / \partial t=\left[A_{0}^{0}, L_{1}^{1}\right]+\left[A_{0}^{1}, L_{1}^{0}\right]+\left[A_{1}^{0}, L_{0}^{1}\right]+\left[A_{1}^{1}, L_{0}^{0}\right] . \tag{20}
\end{equation*}
$$

The zeroth-order term of the perturbed part of L (i.e. α) is easily computed by comparing the highest derivative terms in (13) which yields

$$
\begin{equation*}
L_{1}^{0}=\frac{8}{3} \partial^{2} / \partial x^{2} \tag{21}
\end{equation*}
$$

so that α in equation (13) is assigned the value $\frac{8}{3}$. Now we have to recourse to the linear mode coupling scheme to determine b, from equation (20), which yields

$$
\begin{align*}
\left(b_{t}-b_{3 x}\right) \psi- & \left(3 b_{2 x} \psi_{x}+3 b_{x} \psi_{2 x}\right) \\
= & {\left[a_{x}+20 u_{5 x}-180 u_{x} u_{2 x}-60 u u_{3 x}\right] \psi } \\
& +\left[-16 u_{2 x}+40 u_{4 x}-120 u_{x}^{2}-120 u u_{2 x}\right] \psi_{x} \\
& +\left[-32 u_{x}+20 u_{3 x}\right] \psi_{2 x}+30 u_{2 x} \psi_{3 x}-20 u_{x} \psi_{4 x} . \tag{22}
\end{align*}
$$

Now for the linear mode coupling scheme we have set

$$
\begin{align*}
u & =\sum u_{k} \exp \left[\mathrm{i}\left(K x+K^{3} t\right)\right] \\
\psi & =\sum \psi_{l} \exp \left[\mathrm{i}\left(l x+l^{3} t\right)\right] \tag{23}\\
b & =\sum b_{p} \exp \left[\mathrm{i}\left(p x+p^{3} t\right)\right]
\end{align*}
$$

Then equation (20) can be solved for b in operator form and we obtain

$$
\begin{align*}
b=\frac{1}{18} \int\left(D^{-1} u\right) & +\frac{5}{9} \int u \partial_{x}^{3}+\frac{5}{6} \int u_{x} \partial_{x}^{2}+\int\left(-\frac{8}{9} u+\frac{5}{9} u_{x x}\right) \partial_{x} \\
& +\int\left(-\frac{4}{9} u_{x}+\frac{10}{9} u_{3 x}\right)-\frac{10}{3}\left(u_{x}+u\right) \int u_{x}+\frac{5}{9} \int u_{4 x} D^{-1} \\
& -\frac{5}{3}\left(u_{x x} \int u D^{-1}+u_{x x x} \int\left(D^{-1} u\right) D^{-1}\right) . \tag{24}
\end{align*}
$$

So b is completely determined in terms of the non-linear field and hence the Lax operator for the perturbed KdV equation is explicitly realised. It is important to note that in our above computation we have fixed the values of the constant a_{i} as in Kodama (1985).

References

Bullough R K and Caudrey P J (ed) 1980 Solitons (Berlin: Springer)
Chen H and Liu C S 1979 Phys. Scr. 20490
Iino K and Ichikawa Y 1982 J. Phys. Soc. Japan 514091
Kodama Y 1985 Physica 16D 14

